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Abstract. A self-avoiding walk on a lattice may be characterised by the ‘excluded volume 
ratio’ 

closest approach of two centres 
step length 

V =  

Walks to other than nearest-neighbour sites on a simple cubic lattice have high coordination 
numbers and low values of the excluded volume ratio. Some general results are presented 
for a class of these walks. Exact enumerations and Monte Carlo simulations have been 
made of the total number C, and the mean square length ( R k )  for two examples of this 
class. These measurements are used to test the ‘universality hypothesis’ which contends that 

C, CL 

(R:) - N6l5  

as N + CO, irrespective of the value of V. The data are in reasonable agreement with these 
statements, and the universality hypothesis is found to provide a good basis for the 
description of a self-avoiding walk. 

1. Introduction 

As with many other fundamental problems, that of a self-avoiding walk on a lattice 
defies exact solution. Consequently, analytic results are rare; numerical studies have 
been, and are, plentiful. The challenge lies in interpreting intelligently the vast 
collection of numbers which has been produced. 

The self-avoiding walk is of interest to polymer theorists, who see it as a model of a 
real polymer chain, and also to students of critical phenomena. The feature common to 
both problems is a long-range interaction. The excluded volume effect operates 
between any two monomers of a polymer, no matter how much they are separated along 
the chain; the interesting features of critical phenomena are also dominated by 
long-range interaction. One hopes that the analogy may be further extended and that 
for polymer chains, as for critical phenomena, the essential features are independent of 
the details of short-range structure. 

The consequences of this supposition have been examined elsewhere (e.g. Domb 
1969, Lax et a1 1978), but it will be useful to summarise briefly some of the features. 

t This work has been supported, in part, by the Defence Research Board, Grant 3610-620. 
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Consider the following two equations which figure prominently in numerical studies 
of self-avoiding walks: 

(RL)  -- C N y  ( l a )  

CN == D N ~ ~ ~ .  ( 1 6 )  

(RL) is the mean square end-to-end length of an N-step self-avoiding walk, and CN is 
the total number of such walks. p is the exponential of the connective constant defined 
by Hammersley (1957),  and the values of C, D, y and g are to be established. If the 
quantities (RL) and CN in fact depend on short-range structure, then one can expect y 
and g to vary from chain to chain. If, on the other hand, only long-range effects are 
important, then y and g are effectively critical exponents. In other words y will be the 
same for all chains, as will g. We shall refer to this proposition as the ‘universality 
hypothesis’. The values most often quoted for three-dimensional chains are 

y = 615 

g = 116. 

It is most important to note that the expressions ( l ) ,  incorporating the values (2), are 
expected to be valid only in the vicinity of the ‘critical point’, which for a self-avoiding 
chain means that N must be ‘sufficiently large’. 

The universality hypothesis is an obvious target of numerical investigation. 
Numerous enumerations of short chains and simulations of longer ones have been 
performed with the intent of measuring y and g. The evidence, which is well sum.. 
marised in McKenzie (1976) and Smith and Fleming (1975) is far from conclusive. One 
reason for this is that one is never sure whether or not N is ‘sufficiently large’. If, for 
instance, (RL)  has a Darboux type expansion (see appendix 2) 

B 
( N  

( R $ ) = N 6 / ’  A + - +  ... 

then the asymptotic region will be achieved only for exceedingly large values of N, and 
estimates obtained by fitting data to the simple form ( l a )  are unreliable. It should be 
clear from the above that simple measurements of g and y are not likely to prove or 
disprove the universality hypothesis. A more valid test is surely to see whether or not 
the principle of universality can provide an adequate description for self-avoiding walks 
with widely varying short-range structures. That is the approach of this paper. 

There are, then, essentially two features of interest. The first is the introduction of a 
class of walks, which provides the opportunity for study of self-avoiding walks over a 
wide range of excluded volume. The second is an analysis of the numerical data which is 
more sophisticated than a simple log-log plot. Most investigators have indeed relied 
upon this device to establish the value of y in ( l a ) ,  and failing to find universal values 
have suggested that universality is a false concept. We believe that a less naive 
approach will show this suggestion to be premature. 

Numerical data can furnish estimates of parameters only within the framework of a 
given theory, and care must be taken in the selection of that theory. The particular 
expression (3), which is consistent with the principle of universality, is made plausible by 
the theorem of Darboux cited in appendix 2. 

The presentation is as follows: in 4 2, we define non-nearest-neighbour walks and 
give some useful results. Section 3 is concerned with the numerical results. Data for 
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two examples of non-nearest-neighbour walks are compared with the predictions of the 
universality hypothesis. Some conclusions are stated in Q 4. 

2. Non-nearest-neighbour walks 

One means of fundamentally altering the short-range structure of a self-avoiding walk 
is changing the excluded volume represented by the walk. Define (Smith and Fleming 
1975) the excluded volume ratio of the familiar ‘pearl necklace chain’ (see figure 1) by 

where d is the bead diameter and a is the step Iength. The analogous quantity for a 
lattice walk may be defined as (Barrett 1976) 

V = d / a  

d closest approach of two centres v=-=-- - 
a step length 

(The two centres must not be adjacent along the chain.) 

(4) 

Figure 1. Pearl necklace model. V = d / a .  

Most of the studies which have been done have dealt with the cubic lattices (sc, BCC 
and FCC) and the diamond lattice, €or which V = 1 (e.g. Domb 1963, Wall et nl 1954). 
Recently, however, some work has been done on neighbour-avoiding walks for which 
V > 1 (Torrie and Whittington 1975) and on off -lattice walks for which V < 1 (Smith 
and Fleming 1975, Bruns 1977). To our knowledge no measurements have been made 
on lattices for which V < 1 (except, of course, in this work). 

A self-avoiding walk with an excluded volume ratio less than 1 is obtained by 
permitting steps only to non-nearest-neighbour sites on a simple cubic lattice, and by 
forbidding self-intersections. To illustrate the concepts involved, nearest-neighbour, 
non-nearest-neighbour, and neighbour-avoiding walks on the simple quadratic lattice 
are shown in figure 2. 

Consider a simple cubic lattice with unit lattice spacing. Any lattice point may be 
specified by the vector I = (II, EZ, 1 3 ) .  Generally, a walk on this lattice may be specified 
by permitted step vectors ( p ,  q, r) .  We shall therefore designate as a pqr walk, a walk 
such that each permitted step vector has one component of length p, one component of 
length 4, and the third component of length r. A random pqr walker has 48 choices for 
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Ib)  
v<1 

Figuze 2. (a) Nearest-neighbour walk. V = 1- (b) Non-nearest-neighbour walk. V = 
1/45 < 1. (c) Neighbour-avoiding walk. V = J2 > 1. 

the next step if p # q # r # 0, corresponding to the 3!  permutations of p ,  q, r and the 23 
possible sign combinations. 

We now restrict ourselves to 11P walks. If p = 0, this is a nearest-neighbour walk on 
the FCC lattice and if P = 1, it is a nearest-neighbour walk on the BCC lattice. Otherwise 
a 11P walk is a 24 choice walk. 

The proofs of the following three theorems may be found in appendix 1. 

Theorem 1. The lattice point (1,0,0) is not accessible to any 11P walk. 

Theorem 2. A necessary and sufficient condition for the lattice point (1, 1,0) to be 
accessible to a 11P walk is that p be even. 

Theorem 3. A necessary and sufficient condition for the lattice point (1, 1, 1) to be 
accessible to a 11P walk is that p be odd. 

We note that any lattice vector is a linear combination of the vectors (1, 0, 0), 
(1, 1 , O )  and (1, 1, l), and state the following corollary: 

Corollary. All 11P walks with p even (odd) have the same set of accessible points. 

11P walk: 
With the aid of these results it is not hard to compute the excluded volume ratio of a 

p even 

p odd. 

Now, define PN(l) to be the probability that the random walker occupies the lattice 
site 1 on the Nth step. The lattice walk generating polynomial may be defined by 

4 ( x 1 ,  x 2 ,  x 3 )  =c Pl ( l )X : 'X2X? 
I 
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so that 

4(x) = &(x1 + x ; ' ) ( x 2 + x ; 1 ) ( x ;  + x i " )  + ( X I  + x ; ' ) ( x ;  + x ; p ) ( x 3  + x ; ' )  

+ ( x  p + x TP) (X2 + x;' ) (x3  + x;' )I. (6) 

PN(Z)  can be obtained by extracting the coefficients of x > x $ x $  from dN. 
Following Montroll and Weiss (1965) we write the Green function of the walk as 

-7T 

A ( k )  is the function obtained from (6) by writing 
i k j  xi = e  j =  1,2,3.  

Thus 

A ( k )  = $(cos kl cos k2 cos pk3 + cos kl cos pk2 cos k3 + cos pkl cos k2 COS k3). 

To obtain an asymptotic expression for P(I, x ) ,  note that for x s 1 and 1 large, the 
dominant contribution to the integral arises from those points where A ( k )  = 1. There- 
fore, expand 1 - x A ( k )  in powers of k ,  ignoring terms of O ( k 3 ) .  Then perform the 
integral to obtain 

-J61(1 - x ) l 1 2  
a 

P(Z, x )  -- 3g exp 
2.rra21 

where 1 = (1: + 1: + l ; ) ' I 2  and g is a factor which accounts for the number of effective 
points, in the cube of side 2.n, where A (k) = 1 (see Joyce 1972, Barrett and Domb 1979). 

If P is even there is the point (0, 0,O) and the eight points ( f ~ ,  *T,  f ~ ) .  These 
latter points are at the corners of the cube, and each is shared by eight similar cubes. The 
weight for each corner point is therefore f .  Similarly, if P is odd, there is the point 
(0, 0,O) and the twelve points (0, i r r ,  fr).  The latter are on the edges of the cube and 
are to be weighted by a. Finally then 

g = 2  p even 

g = 4  p odd. 
(9) 

The asymptotic form (8) is identical to that of the Green functions for the cubic 
lattices. The asymptotic results proved by Barrett and Domb (1979) will therefore be 
valid for 11P walks. 

It is possible to make a connection between the usual two-parameter variable 

and the excluded volume ratio V. P is the binary cluster integral. Domb and Joyce 
(1972) have introduced a model which leads to a slightly different definition of z (see 
also Domb and Barrett 1976). Each self-intersection of a random walk is assigned a 
statistical weight 1 - w.  w = 0 thus corresponds to a random walk and w = 1 to a fully 
self-avoiding one. For this model 

z = hON112w (11) 
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where ho, the lattice parameter, is defined by 

We shall use this definition of z .  Note that for a self-avoiding lattice walk 

z = hoN’l2. 

One can make use of this formalism to devise a scaling relationship between 
excluded volume ratios. Let ho and h;  be the lattice parameters of two walks exhibiting 
the same values of 2. Then 

hgN1/’W hoN”’ IV c 1 

which implies 

w = ho/hg. 

If both walks have the same value of g and d, and V* = 1, then 

Once z has been calculated, the expansion factor 

may be computed using an approximate universal formula such as the one proposed by 
Lax et a1 (1978): 

(14) a2=[1+20z156z2+592z3+325z4+1670z 6 ] 1 / 1 5  . 

3. Numerical studies 

Exact enumerations and Monte Carlo simulations were performed on two examples of 
11P walks; the 112 walk which is ‘close packed’ and the 113 walk which is ‘loose 
packed’. The results follow. 

3.1. Exact enumerations 

The results of the exact enumerations are shown in table 1. The first five terms of the 
113 series were computed using the methods described in Barrett (1977). G M Totrie 
of the University of Toronto kindly agreed to check these results, and in doing so 
supplied the next two terms of the series, and all seven terms of the 112 series! 

Estimates of the exponent y may be obtained (see Domb 1963) by defining 

and extrapolating the sequences y3, y s ,  y7 , .  . , , and y4, 7 ’ 6 , .  . . . These ratios are 
plotted for the 113 walk in figure 3, and unfortunately all that can be said is that 2 is not 
an inconceivable limit. 
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Table 1. Exact enumerations 

112 113 
- 

N cN/24 (R:) N cN/24 (R&)  
-- 

2 23 12.522 2 23 22.957 
3 527 19.139 3 529 3 4 4 5 5  
4 12025 25.869 4 12091 47.250 
5 273695 32.689 5 276421 59,548 
6 6216581 39.597 6 6296599 72.101 
7 140975467 46.585 7 143487903 84.652 

Q 
I 
I 

I 

I 
I 

t 
I 

( $ 1  1 1 

7 6  5 L 3 1.0 

Figure 3. Ratios of exact enumerations, 113 walk. 0, universal value 1.2; 0, odd ratios; A, 
even ratios. 

Similarly, very little can be done to estimate CL and g. S G Whittington (private 
communication) has noted a modification to Hammersley’s inequality in the form 

where q is the coordination of the lattice. We thus obtain the following upper bounds 
on C L :  

p S 22,898 (113) 
p S 22,840 (112). 

All attempts to obtain an estimate of g from these series were fruitless. 

3.2. Monte Carlo simulations 

For each of the 112 and 113 walks, a sample in excess of 500 000 walks from 1 to 100 
steps was generated, in blocks of 10000 walks each. The method used is that of 
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Rosenbluth and Rosenbluth (1955), which yields an unbiased estimate of the total 
number of walks, and a biased estimate of the mean square length (McCrackin 1972, 
McCrackin et a1 1973). Computed estimates of this bias are less than 1% of one 
standard deviation, and we have therefore ignored it. The data are displayed in table 2; 
the uncertainties shown are two standard deviations of the block averages. It can be 
seen that the first seven terms are comfortably within one standard deviation of the 
exact values. 

Table 2. Monte Carlo data. 

113 

2 
3 
4 
5 
6 
7 

50 
60 
70 
80 
90 

100 

1.000 
0.996 
0.988 
0.978 
0,966 
0.952 
0.360 
0.280 
0.216 
0.167 
0,129 
0,099 

12.515 i0 .131 
19.125i0.239 
25479 * 0.344 
32.709 * 0.490 
39.613k0.561 
46.655 * 0.635 

389.173k6.69 
476.173i8.78 
564.736*10.1 
655.023 * 12.1 
746.575 rt 13.7 
840.680* 17.5 

2 
3 
4 
5 
6 
7 

50 
60 
70 
80 
90 

100 

1 .ooo 
1.000 
0.994 
0.988 
0.978 
0.969 
0,462 
0,379 
0.310 
0.254 
0.207 
0.168 

22495 * 0,232 
34.921*0.382 
47,174 *0.559 
59.451 i0 .820 
71.938* 1.08 
84.501 * 1.22 

691.134* 10.6 
843,294k12.4 
998.812k15.9 

1157.741 i 19.6 
1317.465 i 2 2 . 4  
1480.655 *28.5 

A plot 
The mere 
formula ( I  

of lg(Rk) versus lg N for all the data (of the 112 wa!k) is shown as figure 4. 
fact that there is curvature present in this plot indicates that the simple 

.) is inadequate, and that correction terms are needed. However, a weighted 

lg N 

Figure 4. Monte Carlo data, 112 walk. Note curvature 
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least squares fit of the 'linear' portion of the curves ( N  > 50) yields 

y = 1.1008, C =9*303 

y = 1.1098, C = 5.062 
(113) 
(112). 

The values of y are certainly less than the predicted 'universal' values 1.2. 
A weighted least squares fit of the same data ( N  3 50) to the Darboux form (3) yields 

A = 5.489, B = 42.25 

A = 3,134, B = 21.80 
(113) 
(112). 

Figure 5 shows a comparison of the Monte Carlo data to the fitted forms (1) and (3). The 
difference between the two is not significant, but the second is perhaps to be preferred 
on theoretical grounds. 

5 1  - 

33t 
3 0  1 I I I I 

0 010 0 013 0016 0 019 

1 / N  

Figure 5. Comparative fit of Monte Carlo data with fitted expressions, 112 walk. 0 
(R&) /N"",  0 (R&)/N'".  Upper full line, C = 5 . 0 6 2 ;  lower full line A + B / N =  
3.134 + 21.8 /N.  

It has been proposed (Barrett 1975, 1976) that 

A = (2Jiho)2'5a2 

for the cubic lattices. Assuming the same relation for the 11P walks, we expect 

A =4*837 (1 13) 
A = 2.877 (1 12) 

which differs by approximately 10% from the Monte Carlo values. The agreement may 
not be convincing, but it is tempting. 

Finally, the data for N 2 50 has been compared with the predictions of the universal 
formula (14). The difference is at most a satisfying 2% (agreement this good is probably 
fortuitous). 

The total number of walks CN has been fitted to the relation 

lg c, = 1gD + N  lg /A + g  1gN 
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by non-linear regression (see, for example, Nielson 1964). The results are: 

Ig D = -0.108 ltr0.001, g = 0.120S 0.001, lg p = 3*114* 0.001 (1 13) 

lgD=-0~086ztO~OOl, g=0.125*0*001, l g p  =3.108*0*001 (112). 
(17) 

The corresponding estimates of p are 

p = 22.503 (113) 
p = 22.373 (112). 

Since IimN+m (1 /N) Ig CN = lg p9 it is possible to estimate p by extrapolating the 
sequence {(1/N) Ig CN}. The values obtained in this way are: 

lg p = 3.1 15 It O * O O I  (113) 
p = 22.539 

(18) 
l g p  =3*109ztO*OOl (112) 

p = 22.410. 

If p. is known then one may estimate g by fitting lg(CN/pN) versus Ig N. However, 
no reasonable value of g is obtained in this fashion if the estimates (18) are used. g is 
clearly a very sensitive function of p. 

Alternatively one can assume g = 4 and then fit lg(CN/Ng) versus N to obtain Ig p. 
The results are: 

lg p =3-1130*0*0004 (113) 

U = 22.490 

lg ,U = 3.107 * 0.001 (112) 

p = 22.361 

(19) 

in close agreement with (17). Clearly, g = 4 cannot be excluded. 

4. Conclusions 

We have assumed particular expressions for the numbers of self -avoiding walks and 
their mean square lengths based on the principle of universality, and a theorem of 
Darboux. We have examined the 112 and 113 self-avoiding walks to determine 
whether 01’ not these walks fit into the ‘universal’ scheme. We find, in fact, that they fit 
reasonably well. Indeed we find that the formulae (3), (14) and (16) provide a good 
description of the 112 and 113 walks as well as of the cubic lattice self-avoiding walks. 
We regard this as additional evidence of an ‘experimental’ nature supporting the 
universality hypothesis. 

Acknowledgments 

S G Whittington and G M Torrie have made a handsome contribution to this work, as 
have R Benesch, R Swift and E Allen, E) DeKee provided the non-linear regression 
program. Thanks are also due to CVW. 



Self-avoiding lattice walks 1821 

Appendix I. Proof of theorems 

Proof of theorem 1. The lattice walk generating function is defined by (6). The 
probability that the random walker arrives at the point (11, 1 2 ,  1 3 )  on the Nth step is the 
coefficient of x ? x $ x >  in [4(x l ,  x2, x3)IN.  4 N  is a linear combination of terms of the 
form 

x++j , ( - l )+i3p+i4( -p)  k,+k,(-l)+k,p+k,(--p) m,+nl,(-l)+m,p+m,(-p) 
x2 x3 

with the following conditions on the ji, k i ,  mi:  

(1) jiaO, ki  3 0 ,  mi 3 0 ;  i = 1, 2, 3,  4.  

( 3 )  

(4) 

jl + j 2  + k l  + k2 + ml + m2 = 2(j3 + j 4  + k3 + k4 + m3-t m4). 

j l  - j 2  + ( j 3  - j4 )p  = 11 

kl - k2 + (k3- k4)p -1 12 

ml-m2+(m3-m4)p  = / 3 .  

The third condition arises from the fact that two of the xi have an exponent *l, while 

Define 
only one has an exponent ztp,  in each term of 4. . 

A = jl - j 2  + kl - k2 + ml - m2 

B = j 3  -- j 4 +  k3  -. k4+ m3 - m4. 

Since j l  - j 2  has the same parity (even or odd) as j l  + j 2 ,  it follows from condition ( 3 )  that 
A is even. It follows from condition (2) that B has the same parity as 3N, and hence as 
N. 

Setting 11 = 1, l2  = 13 = 0 in condition (4), and adding we find 

A + Bp = 1. 

Case 1. p even. This is clearly impossible. 

Case 2. p odd. For this to be possible, B and hence N must be odd. But if p is odd, it 
follows from condition (4) that k l  - k2  and k3 - k4 must have the same parity for l2  =; 0. 
Then N -- k l  + kz  + k3  + k4 must be even, which is a contradiction. 

Proof of theorem 2. Necessity: assume p odd. Setting lI = l2  = 1, l3  = 0 in condition (4) of 
the preceding proof, we obtain 

A + B p = 2  

which implies that B and hence N must be even. But condition (4)  implies that k l  - k2 
and k3  - k4 must have opposite parity for p odd and l2  = 1. Therefore N must be odd 
from condition ( 2 ) ,  which is a contradiction. 
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Suficiency. It suffices to find numbers jl, j 2 ,  . . . , m4 such that the conditions (1)-(4) are 
satisfied. Set 

i = (1, p ,  190) 

= (1, p ,  190) 

N = p + 2  

p even 

m = (191, P/2, P / 2 ) .  
Write N factors of x1x2x3. To jl of the x1 assign the exponent 1 ; to j 2  of the x1 attach 

the exponent -1, to j 3  of xl assign the exponent p ,  and to the remaining j 4 ~ 1  assign the 
exponent -p. Assign exponents to the x2  and x3 in the same way. 

Each factor then represents one step of a path from the origin to the point (Il ,  12, 13).  

Proof of theorem 3. Necessity: suppose p to be even. Then if the point (1, 1, 1) is 
accessible, the point (1, 1, 0) is not, by theorem 1. This contradicts theorem 2. 

Suficiency. Set 

N = 6 p + 3  p odd. 

Appendix 2. Functions of Darboux type 

The choice of the asymptotic form 

B 
(R $) = AN6/' [ 1 + + 0 ($)I 

is not as arbitrary as might first appear. Darboux (1878) has proved the following 
theorem (see also Domb 1971). 

If F ( z )  has an isolated singularity at z = cy on the circle of convergence, and can 
therefore be written as 

F ( z )  = (CY -z)- 'G(z) + H ( z )  

where G and H are regular at z = cy, then the coefficients aN of the Maclaurin expansion 
N F ( z )  = 1 aNz 

may be written asymptotically as 

B 
aN = AN 

1 + z+ O( $)I. 
The theorem is, in fact, valid for any function which is analytic save for a number of 
isolated singularities. y in this case would be the index of the dominant singularity 
closest to the origin. 

To  illustrate the ideas involved we reproduce here the proof for the special case 
where y is an integer. Write 

+. . . + H ( z ) .  Ai F ( 2 )  = - + 
(cy - 2)' (cy - 2 ) Y - l  
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Expanding both sides in Maclaurin series and equating coefficients of z N :  

A0 a N a N = 7 ( ~ + 1 ) ( ~ + 2 ) .  . . ( N + ~ - I )  
a 

-- - A I  ( N + l ) ( N + 2 )  * * .  ( N + y - 2 ) + .  . 
Y - 1  

which completes the proof. 
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